Mendelian Genetics
Introduction to Genetics

https://www.brainpop.com/health/geneticsgrowthanddevelopment/heredity/

Do Now –

1. Who is known as the “father of modern genetics”?
2. He discovered the basic principles of heredity using what plants?
3. Name the cell organelle where genetic material (DNA) is stored?
• **Mendel** wanted to find out how lifeforms pass traits, from one generation to the next.

• Using **pea plants**, he found indirect but observable evidence of how parents transmit genes to offspring.

• He had **NO KNOWLEDGE** of genes or chromosomes!
Mendel’s Hypothesis

• Mendel was the first biologist to use Mathematics – to explain his results quantitatively.

• Mendel predicted
 – The concept of genes
 – That genes occur in pairs
 – That one gene of each pair is present in the gametes
Reproduction

- In asexually reproducing organisms, all the genes come from a single parent. These genes are normally identical to the parent.
- Sexually reproducing organisms normally receive half their genetic information from the Mother's egg and half their genetic information from their Father's sperm. Sexually reproduced offspring resemble but are not identical to their parents.
Mendel’s peas

Mendel looked at **seven traits** or characteristics of pea plants:
How did he do it?

- Mendel took pollen from short stemmed plants and placed it on other short stemmed pea plants.
- Resulting in all short pea plants.
- Mendel called these true breeders, because all the offspring were the same as the parents.
- Hybridization: Mating, or crossing, of two varieties.
What happened next?

P generation

- Tall
- Self-pollinated

Step 1
- Self-pollinated

Step 2
- Cross-pollinated
- All tall

F₁ generation

Step 3
- Self-pollinated

F₂ generation

- 3 tall
- 1 short
Allele Expression

<table>
<thead>
<tr>
<th>YY</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yy</td>
<td>Yellow</td>
</tr>
<tr>
<td>yy</td>
<td>Green</td>
</tr>
</tbody>
</table>

- **Dominant** – the allele of a gene that masks or suppresses the expression of an alternate allele. “Y”
- **Recessive** – an allele that is masked by a dominant allele. “y”
Allele Combinations

- **Homozygous** (pure) – having identical genes (one from each parent) YY or yy
- **Heterozygous** (hybrid) – having two different genes for a particular characteristic Yy
• The **Law of Dominance** states that for contrasting traits only the **dominant trait** (or one gene of an allelic pair) is expressed.

• Mendel saw this unfold for all of the **seven traits** that he studied.

• He came up with the **Principle of Segregation and Recombination**.

• Mendel’s **law of independent assortment**, states that allele pairs separate independently during the formation of **gametes**.
Genotype & Phenotype

- **Genotype** refers to particular genes an individual carries. Ex: BB, Bb, YY, yy, etc
- **Phenotype** refers to an individual’s observable traits. Ex: physical characteristics (blond hair, brown eyes, etc.)
- Cannot always determine genotype by observing phenotype
Genetics terms you need to know:

- **Gene** – a unit of heredity; a section of DNA sequence encoding a single protein
- **Genome** – the entire set of genes in an organism
More genetic terms

- **Alleles** – two genes that occupy the same position on **homologous chromosomes** and that cover the same trait (like ‘flavors’ of a trait).
- **Locus** – a fixed location on a strand of DNA where a gene or one of its alleles is located.
Monohybrid cross
A cross that tracks the inheritance of a single character.

- Parents differ by a **single trait**.
- Crossing two pea plants that differ in stem size, one tall one short

\[
\begin{align*}
T &= \text{allele for Tall} \\
\text{t} &= \text{allele for dwarf (short)} \\
TT &= \text{homozygous tall plant} \\
\text{t} \ \text{t} &= \text{homozygous dwarf plant} \\
TT \times \text{t} \ \text{t}
\end{align*}
\]
Monohybrid cross for stem length:

\[P = \text{parentals} \]
\[\text{true breeding,} \]
\[\text{homozygous plants:} \]

\[\begin{align*}
T T & \times t t \\
(\text{tall}) & (\text{dwarf})
\end{align*} \]

\[\text{F}_1 \text{ generation} \]
\[\text{is heterozygous:} \]

\[T t \]
\[(\text{all tall plants}) \]
Using a Punnett Square

STEPS:
1. Determine the *genotypes* of the parent organisms
2. Write down your "cross" (mating)
3. Draw a p-square

Parent genotypes: T T and t t

Cross

T T × t t
Punnett square

4. "Split" the letters of the genotype for each parent & put them "outside" the p-square

5. Determine the possible genotypes of the offspring by filling in the p-square

6. Summarize results (genotypes & phenotypes of offspring)

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Tt</td>
<td>25%</td>
</tr>
<tr>
<td>t</td>
<td>Tt</td>
<td>25%</td>
</tr>
</tbody>
</table>

Genotypes: 100% T t

Phenotypes: 100% Tall plants
Monohybrid cross: F₂ generation

- If you let the F₁ generation self-fertilize, the next monohybrid cross would be:

 \[T \ t \times T \ t \]

 (tall) (tall)

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T T</td>
<td>T t</td>
</tr>
<tr>
<td>t</td>
<td>T t</td>
<td>t t</td>
</tr>
</tbody>
</table>

 Genotypes:
 1 TT = 25%
 2 Tt = 50%
 3 tt = 25%

 Genotypic ratio = 1:2:1

 Phenotype:
 3 Tall
 1 dwarf

 Phenotypic ratio = 3:1
Monohybrid cross in Humans

Bb × Bb

(Brown hair)
(blonde hair)

Genotypes:
1 _____ = __________
2 _____ = __________
1 _____ = __________

Genotypic ratio = __________

Phenotype:
3 ______________
1 ______________

Phenotypic ratio = __________
Dihybrid cross: flower color and stem length

TT PP × tt pp
(tall, purple) (short, white)

Possible Gametes for parents

<table>
<thead>
<tr>
<th>TP</th>
<th>tp</th>
<th>tp</th>
<th>tp</th>
<th>tp</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>TtPp</td>
<td>TtPp</td>
<td>TtPp</td>
<td>TtPp</td>
</tr>
</tbody>
</table>

F1 Generation: All tall, purple flowers (Tt Pp)
Incomplete Dominance

True Breeding Red & White Parents

F1 Generation = ALL Pink

F2 Generation yields ratio of 1:2:1 Red: Pink: White

When one allele is only partially dominant over the other -- the dominant allele is only partially expressed when the recessive allele is present.
Incomplete Dominance

The allele for white spotting (S) is *incompletely dominant* to the allele for solid color (s). Left: Black cat with Ss genotype. Right: Black cat with SS genotype.
A non-cat example of incomplete dominance: Cross a white horse and a chestnut brown horse and the result is a *golden palomino*.
Co-dominance

- When *neither allele is dominant* over the other (alleles have equal power).
- *Both alleles* can be expressed.
- For example, red cows crossed with white will generate roan cows. Roan refers to cows that have red coats with white blotches.
Mendel’s impact

• Mendel’s theories of inheritance, first discovered in garden peas, are equally valid for figs, flies, fish, birds and human beings.

• Mendel’s impact endures, not only on genetics, but on all of science, as a case study of the power of hypothesis.
Seed shape

a. Round is dominant (R)
b. Wrinkled is recessive (r)
c. An RR father and an rr mother

d. What shape(s) are the parents?
e. What shape(s) are the children?
Pedigree
Inheritable traits

The Simpsons

Abraham
Mona
Clancy
Jackie

Herb
Homer
Marge
Patty
Selma

Bart
Lisa
Maggie
Ling
The Pedigree Chart

- A chart that shows a **familial line**.
- Can show the **presence or absence** of a particular **trait** in each member of each generation.
How many girls? 11
How many boys? 8
How many couples have children? 4

A
 | |
 C D
B
 |
 E
 | |
 F
 |
 M
 |
 N
 |
 O
 |
P
 |
 Q
 |
 R
 |
 S
 |
 T
G
 |
 H
 |
 J
 |
 K
 |
 L
Rr mom

RR dad

Rr daughter

RR daughter

Rr son

R = tongue roller
r = non-roller
PTC test

A single gene which codes for a protein found in our tongues.

- PTC will bind with the protein if it present and a person will taste it.
- If the protein is not present, PTC will not bind and a person cannot taste it
- Being able to taste PTC is a dominant trait.

Are you a Super Taster?
https://www.youtube.com/watch?v=W7Pzhvypg9A
Linked Genes

- When genes for **two different traits** are located on the same chromosome pair
- Linked genes are **USUALLY** inherited together.

• The exception to this principle can be found when **crossing over** occurs. For example not all persons with red hair have freckles.
- **Crossing over**: during first meiotic division, homologous chromosomes exchange portions of their chromatids.
- Crossing over results in the **rearrangement of linked genes and increases the variability of offspring**.
Genetic Disorders

- A woman is considered a carrier if she has one recessive sex-linked trait:
 \[X^H X^h\]
- In a woman, the recessive trait is “hidden” by the dominant gene.
- BUT if a man inherits one recessive sex-linked trait he always shows that trait:
 \[X^h Y\]

- **X-linked dominant** – found on the X chromosome
 – Less common than X-linked recessive
- **X-linked recessive** – found on the X chromosome
 – Only boys have affected, and girls are carriers
Sex Linked Genes

- Sex linkage depends on the sex of the individual and is directly tied to the sex chromosomes.
- Genes on X and Y chromosomes are called sex-linked genes.

Colorblindness

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- $X^C Y =$ Not affected
- $X^C X^C =$ Not affected
- $X^C X^c =$ Carrier
- $X^C Y =$ Has disease

Hemophilia

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- $X^H Y =$ Male
- $X Y =$ Female
- $X^H X =$ Female Carrier
- $X^H Y =$ Male With Hemophilia
Here are some illustrations of the most common forms of color-blindness:

<table>
<thead>
<tr>
<th>The colors of the rainbow</th>
<th>The colors of the rainbow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal color vision</td>
<td>Deuteranope (simulation)</td>
</tr>
<tr>
<td></td>
<td>Absence of green retinal photoreceptors</td>
</tr>
<tr>
<td>The colors of the rainbow</td>
<td>Protanope (simulation)</td>
</tr>
<tr>
<td></td>
<td>Absence of red retinal photoreceptors.</td>
</tr>
<tr>
<td>The colors of the rainbow</td>
<td>Tritanope (simulation)</td>
</tr>
<tr>
<td></td>
<td>Absence of blue retinal receptors</td>
</tr>
</tbody>
</table>
Colorblindness
Hemophilia is an inherited blood disorder in which the blood does not clot properly.
X-linked disorders

- X-linked genes are **never** passed from father to son. The Y chromosome is the **only** sex chromosome that passes from father to son.